Женская грудь - идеальная упаковка для молока!

Механические свойства

Механические свойства полимеров зависят от условий их по­лучения, способа переработки и предварительной обработки. Общий характер механического поведения конкретного поли­мера определяется тем, в каком физическом состоянии он нахо­дится. Наибольшее распространение получило мнение, что ли­нейные и разветвленные полимеры могут находиться в трех со­
стояниях — стеклообразном, высокоэластическом и вязкотеку — чем [10]. Трехмерные, или пространственно сшитые, полимеры могут находиться лишь в первых двух состояниях. Ряд ученых выделяют пять и более основных состояний полимеров — хруп­кое, вынужденно-эластическое, высокоэластическое, вязкоте — кучее, кристаллическое и ориентированное [7, 8].

Хрупкое состояние присуще полимерам в области темпе­ратур ниже Тхр. При этом стеклообразные аморфные и крис­таллические полимеры разрушаются по хрупкому механизму при малых деформациях, соблюдается закон Гука о пропорцио­нальности между силой и деформацией. Механизм разруше­ния подчиняется теории Г]риффита.

Вынужденно-эластическое стеклообразное состояние на­блюдается у полимеров в области температур от Тхр до Тс (зона I, рис. 4.4). Деформации при растяжении в этом состоянии пред­ставляют собой сложный процесс. На начальном участке I (рис. 4.5) деформации примерно пропорциональны напряже­нию. В точке А, когда напряжение достигает значения ав, на-

Механические свойства

Г,

Тг

Разл.

Тс ^пл Тт


Рис. 4.4. Типичные термомеханические кривые аморфного (1), кристаллического (2) и сшитого сетчатого (3) полимеров; I, II, III — области стеклоообразного, высокоэластического и вязкотекучего состояний соответственно. 7"Xp температура хрупкости; Тс — стеклования; Гпл — плавления; Тт — текучести;

T"Da3J1 — начала химического разложения


Механические свойства

Аморфного стеклообразного полимера

Зываемого пределом вынужденной эластичности, в наиболее слабом месте образца возникает так называемая «шейка». «Шейка» проявляется в виде местного сужения и утонения ма­териала. При дальнейшем растяжении реализуются большие значения эластических деформаций до тех пор, пока «шейка» не распространится на всю рабочую часть образца (точка В). Та­кие большие деформации по своей природе являются высоко­эластическими, поскольку связаны с изменением конформа — ций макромолекул. На участке III в образце развивается множе­ство микротрещин, которые приводят к разрушению в точке С.

В высокоэластическом состоянии полимер находится в зоне II (см. рис. 4.4), расположенной между Тс и Тт. Его молеку­лярная подвижность становится настолько большой, что струк­тура в ближнем порядке успевает перестраиваться вслед за из­менением температуры, как это наблюдается в жидкостях. Та­ким образом, разрыву предшествует обратимая высокоэласти­ческая деформация, связанная с ориентацией звеньев цепей макромолекул, а также надмолекулярных образований.

В вязкотекучем состоянии (зона III) выше Тт происходят необратимые пластические деформации, связанные с про­скальзыванием макромолекул друг относительно друга.

Отличительной особенностью поведения полимеров являет­ся их ярко выраженная зависимость от скорости приложения нагрузки, температуры и длительности нагружения. Под дей­ствием механических сил все тела испытывают напряжения и деформации. При их критическом значении или длительном воздействии происходит разрушение. В соответствии с этим различают деформационные и прочностные свойства.

Механические свойства материалов определяют проводи­мыми по определенным методикам механическими испыта­ниями. Испытания различают по типам деформации (одноос­ное и двухосное растяжение и сжатие, всестороннее сжатие, изгиб, сдвиг, кручение, вдавливание и др.), а также по режи­мам нагружения (постоянная нагрузка или деформация, цик­лическая нагрузка, удар и др.).

Leave a Reply

Name (required)


Mail (required)


Website



ТАРА И ЕЕ ПРОИЗВОДСТВО

Деформационные свойства

(4.8) (4.9) Деформация полимеров имеет вязкоупругий характер. Наи­большее развитие в описании деформационных свойств поли­меров получила теория вязкотекучести, которая рассматрива­ет вязкоупругое тело как комбинацию идеально упругого и идеально вязкого элементов. Поведение идеально упругой со­ставляющей в терминах классической теории упругости выра­жается обобщенным законом Гука и характеризуется по край­ней мере двумя упругими константами — модулем Юнга Е и […]

Типы сварных соединений и швов

Основными типами сварных соединений полимерных пленочных материалов являются стыковое, нахлесточное, Т-образное и угловое. Помимо геометрической характерис­тики способа сопряжения поверхностей тип сварного соеди­нения характеризует и форма кромок соединяемых деталей. Кромки могут быть прямыми, с односторонним или двусто­ронним скосом. Сварные швы характеризуют способом выполнения сварки, технологическими и конструктивными особенностями: одно­сторонняя или двусторонняя сварка, наличие одной или двух […]

ТАРА И ЕЕ ПРОИЗВОДСТВО

Ефремовы. Ф. Двадцатый век характерен бурным развитием науки и тех­ники. Как следствие, во многих отраслях промышленности пе­риодически возникают новые профессии, о которых раньше было трудно даже предполагать. По уровню производства ко­нец XX столетия несопоставим с началом и даже с серединой столетия. Поэтому совершенно естественным являются требо­вания к подготовке инженеров новых специальностей. По сво­ей сути инженеры […]